
This	
 work	
 was	
 performed	
 under	
 the	
 auspices	
 of	
 the	
 U.S.	
 Department	

of	
 Energy	
 by	
 Lawrence	
 Livermore	
 Na?onal	
 Laboratory	
 under	
 Contract	

DE-­‐AC52-­‐07NA27344.	
 Lawrence	
 Livermore	
 Na?onal	
 Security,	
 LLC Release Number:

This	
 work	
 was	
 performed	
 under	
 the	
 auspices	
 of	
 the	
 U.S.	
 Department	

of	
 Energy	
 by	
 Lawrence	
 Livermore	
 Na?onal	
 Laboratory	
 under	
 Contract	

DE-­‐AC52-­‐07NA27344.	
 Lawrence	
 Livermore	
 Na?onal	
 Security,	
 LLC Release Number:

Parallel Discrete
Event Simulation

Course #15
David Jefferson

Lawrence Livermore National Laboratory
2014

LLNL-­‐PRES-­‐654663-­‐DRAFT

1 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Last Two Weeks!
• Two “finale” lectures!

• I will make an audacious but speculative argument!
• Optimistic parallel discrete event simulation can be viewed as a new parallel

programming paradigm for many scalable applications, not just simulation.!
• Put another way: From this point of view all sufficiently large cooperative

parallel computations can fruitfully be viewed as simulations!

• Will touch on many exascale (and beyond) issues!
• synchronization!
• debugging!
• fault recovery!
• load balancing!
• power management!
• space-time symmetry!
• parallel programming methodology!

• Looking for your feedback and ideas!

2

Remember that none of the ideas in this week’s lecture or last have been implemented and tried out in real applications. Lectures 14 and 15 are speculative in
nature and are my personal best guesses of where virtual time technology might be useful.

2 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Virtual Time for Most
Large Scale Computations

3

3 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Simplify some of the complexity by
using Virtual Time
• Virtual time is a temporal coordinate system that plays a

logical role in the computation!
• It is an abstraction of real time, much as an address space is an

abstraction of real space!
• It has many of the same properties of Newtonian time!
• It allows time to be addressable and random access, just as we make

space addressable.!

• Heretofore the only broad computational paradigm that
makes explicit use of a temporal coordinate system is
simulation.!

• But what if we view any computation as taking place in
the context of both a temporal and spacial address space
— virtual space-time?!

Virtual time — not just for simulation any more!
4

4 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Determinism

5

5 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

All virtual time programs are
deterministic!

• Replace threads, processes, chares, etc. with objects of the kind we
have described in this course.!

• Replace all synchronization and mechanisms with structures defined
in terms of virtual time!

• Replace all communication mechanisms with structures defined from
event messages!

• Require a deterministic virtual time tie-breaking rule !

• Exclude access to real time, real randomness, real node addresses,
and real memory addresses inside of event methods!

• Require deterministic assignment of virtual time values!

• Then —

6

It is impossible to write a nondeterministic
virtual time program!

• This is true for both conservative and optimistic implementations.

6 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Debugging methodology can be
greatly simplified

• Any nondeterminism observed is immediately known to be a fault or else a bug in
the underlying runtime system, OS, or hardware. !

• Classic “sequential” reasoning and instrumentation used to narrow down the
location of a bug works for parallel applications, because the semantics of virtual
time are sequential.!

• No timing-dependent Heisenbugs are possible at the application level — passive
instrumentation that affects real time behavior does not affect virtual time behavior!

• Breakpoints can be introduced in the runtime system (without resorting to
instruction replacement) to pause the global computation at a particular virtual
time for closer inspection with power tools.!

• Time stepping through various intervals of virtual time is possible and
reproducible.!

• With optimistic (rollback-oriented) implementation, fast backward time-stepping
through virtual time can be implemented based on suppression of fossil collection
(until you run out of RAM).!

• We already discussed low-overhead, non-barrier optimistic checkpointing as well
earlier in the course

7

7 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Arbitrary fault detection and recovery
!

• Because of application-level determinism, any discrepancy indicates a failure
in system layers below!
• transient or permanent HW failure of some kind (including in the comparison)!
• a bug in runtime system or OS!

• Arbitrary single faults affecting the application are detectable by
duplicate computations!
• Not just memory or communication faults — transient processor faults also!
• Arbitrary single faults are correctable by triplicate computation and voting !

• These techniques only work for arbitrary single faults if the
application is deterministic!
• With a nondeterministic computations, the fact that states and messages do not disagree

means nothing.!
• There may not even be corresponding states and messages!

• In addition, with optimistic virtual time, transient faults are also
correctable by quasi-local local rollback!
• No need to restore global checkpoint!

8

Transient processor faults are not even detectable in today’s architectures — there is no hardware for it today and in general there generally can’t be without
duplication somewhere.!!
Even if detectable, such faults are not correctable without even more mechanism.!!
But as we will see, transient faults can be detected and corrected without restoring global checkpoints using virtual time.

8 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Synchronization

9

9 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Synchronization is about the relative
timing of events in a computation
• It is about constraints of the timing relationships among

events!
• It is about the total order of events only,!
• … not their real time speed or performance!
• Recall that with any implementation of virtual time the runtime system is

concerned only with the ordering properties of virtual time values, not the
arithmetic properties!

• We can thus re-interpret the definitions of various
synchronization constraints as referring to virtual time
instead of real time!

• Examples!
• mutual exclusion!
• database transactions!
• barriers

10

Because virtual time has exactly the properties of real time that synchronization depends upon, we can consider every synchronization primitive and re-interpret its
definition and/or implementation with virtual times substituted for real time. A lot of very interesting things happen.!!
The general way to think about virtual time synchronization is this: define a synchronization constraint in terms of real time values. Then redefine it substituting
virtual time values. The results is another synchronization primitive that is nonblocking and optimistic and in many cases can perform better than the real-time
(conservative) primitive.

10 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Mutual exclusion

11

11 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Mutual Exclusion
• Two actions, P and Q, are mutually exclusive if they do not overlap

in time, i.e. either P completes before Q starts, or vice-versa.!
• Or if they are executed in a semantically equivalent way!

• Usually implemented as a race: The first one to start prevents the
second one from starting until the first one completes!

• It is nondeterministic which one wins.!

• Generally implemented with busy-waiting, locks, semaphores, etc.,
and proper prelude and postlude code in P and Q.!
• Deadlock is a hazard if not done correctly!

• These implementations apply only to sequential segments of code
that somehow share access to a lock or semaphore!

• They are not naturally generalizable to the case where P and Q are
themselves big parallel computations.!

• These implementations preclude any parallelism between P and Q
12

The real time definition of mutual exclusion would go something like this: P and Q are mutually exclusive if the real time interval during which P executes does
not overlap with the real time interval in which Q executes.!!
Or, equivalently, P and Q are mutually exclusive if one of them finishes executing at a real time moment earlier than the real time moment at which the other one
starts.

12 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Mutual Exclusion in Virtual Time
• Instead, interpret the definition of mutual exclusion to mean non-overlapping in

virtual time rather than in real time!

• Simply allocate an interval of virtual time to P and a non-overlapping one to Q. !

• No locks or semaphores required. No prelude or postlude code required.!
• Deadlock is impossible!!

• Works even if P and Q are arbitrarily large and complex parallel computations, not
just sequential fragments!

• P and Q can execute in parallel as long as they do not conflict. If they do, one the
one in the later virtual time interval will (partially) roll back.!

• The two may execute in either order or in parallel, but …!
• If there is a conflict, the one allocated the earlier virtual time interval always “wins”!
• This is deterministic mutual exclusion!
• Regardless of actual execution order their committed results will be as if executed in virtual time

order!

• You cannot write nondeterministic mutual exclusion in virtual time !
• … unless you assign virtual times by nondeterministic mechanisms, which we have excluded!

• On the other hand, you cannot write deterministic mutual exclusion with locks or
semaphores!
• … which are inherently nondeterministic

13

The real time virtual time definition of mutual exclusion would go something like this: P and Q are mutually exclusive if the real time virtual time interval during
which P executes does not overlap with the real time virtual time interval in which Q executes.!!
Or, P and Q are mutually exclusive if one of them finishes executing at a real time virtual time moment earlier than the real time virtual time moment at which the
other one starts.

13 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Atomic transactions

14

14 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Database transactions
• An atomic transaction P is an action that is, in effect,

mutually exclusive with all other actions in the
computation!
• i.e. during its execution no other code can modify or observe its

intermediate states!

• Database transactions generally have to be atomic!
• Order of transaction execution generally nondeterministic!
• Optimistic, multiversion concurrency control mechanisms go part way

toward optimistic virtual time synchronization but …!
• use transaction abort rather than full rollback!
• are still nondeterministic in the serialization order of transaction execution!

• None of the concurrency control mechanisms are readily generalizable to
arbitrary internally parallel or distributed atomic actions!

• Generalization to arbitrary nested transactions is complex

15

15 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Virtual Time Atomic Actions
• In Virtual Time all single events are already primitive

atomic actions !

• An arbitrary complex parallel or distributed action can
be made atomic by allocating it a window of virtual time
that does not overlap that used by any other part of the
computation!
• All transactions must be allocated short segments of virtual time unique

to themselves — that’s all there is to it!
• Nested transactions are easily accommodated by allocating nested

regions of virtual time to them.!

• Even distributed transactions that access the same data
objects can proceed in parallel!
• If there is a conflict, the one with the lower region of virtual time will

always win!
• Transactions commit in virtual time order !
• Apparent order of transaction execution fully deterministic

16

16 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Barrier
Synchronization

17

17 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Barrier Synchronization

• If P and Q are parallel programs, then let us write !
! ! { P ; Q }!
where ; is a barrier synchronization operator.!

• Semantically, barrier synchronization is the composition of
(partial) functions. If FP and FQ are (partial) functions over system
states corresponding to programs P and Q, then !
! ! ! ! ! F{P ; Q} = FQ ◦ FP!

• Operationally, barrier synchronization means!
• Execute P, starting from an initial input state!
• Execute Q, where the output state of P is the input state of Q!
• The output state of the whole computation is the output state of Q!
• Information is only transmitted from P to Q, but never the reverse

direction

18

18 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Conservative Implementation of
Barrier Synchronization

• There must be a way of indicating which processes are
involved in a particular barrier instance. In MPI that is a
communicator.!

• In each process we need a specific call to a barrier
function, e.g. MPI_barrier(communicator), at the exact
point in the logic where the barrier occurs!

• The conservative implementation of { P ; Q } relies on
process blocking!
Start all parallel parts of P; if any part of P fails, abort!
Each process, when it executes the barrier() operator, blocks!
 until all parallel components of P to finish in real !
 time(including any threads or processes created by P)!
Start all parts of Q

19

The real time definition of barrier synchronization is this: there is a barrier between parallel activities P and Q if P finishes at a real time moment earlier than the
real time moment when Q starts.

19 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Barrier Synchronization

• Blocking until all parts of P to finish in real time is not
formally required!

• All that is required is that it appear that way, though it is
not obvious how else to do it!

• Parts of Q can be started before parts of P finish, or even P
and Q can be done out of order, as long as the formal
definition of barrier synchronization is satisfied.!

• Compilers routinely reorder statements across ; -
boundaries all the time, as long as it makes no semantic
difference.

20

20 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Optimistic Virtual Time Synchronization
• Fundamental observation:!

With virtual time there is always a perfect global
barrier between any two distinct virtual times!!

• To create implement a barrier as in { P ; Q }, just
make sure that all events in P take place at lower virtual
times than any of those in Q!!

• Because the barrier is global, no construct like a
communicator is required.!

• Because we are using virtual time no specific call to any
kind of barrier() programming primitive is required. !
• We have our temporal coordinate system to use instead of points in the

sequential code.!
• We can name points in virtual time, and we can calculate them!

21

The real time virtual time definition of barrier synchronization is this: there is a barrier between parallel activities P and Q if P finishes at real time virtual time
moment earlier than the virtual time momentwhen Q starts.

21 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Comparison between conservative and
optimistic barrier synchronization

• Blank space:
blocked
process!

• Light tan:
event
execution that
will be rolled
back!

• Dark brown:
rollback
overhead
(assumed 50%
or event time)

22

This slide shows the diagrams in the previous two slides side-by side. You can see that the conservative barrier execution has a lot of time when the processors are
idle, waiting at the barrier for the last process to reach it before starting the next round of computation. But the optimistic barrier synchronization has no idleness.
It is always executing (at least until the last round is finished). The execution is in most cases speculative and ends up getting rolled back. But even so, the five
rounds of the computation finish slightly sooner that with the conservative synchronization. !!
A key parameter for the repeated barrier computation is the ratio of the worst case execution time of any process in a round to the average case execution time
among the processes in a round. If that ratio is high, then conservative execution performs very poorly and optimistic execution often wins. If that ratio is low,
however, then the overhead of optimistic synchronization often causes it to perform worse than conservative synchronization.

22 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Fault Recovery

23

23 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Detecting and correcting transient
computational faults

• Today we have various mechanisms for detecting and
correcting memory errors and data transmission errors!
• Generally variations on parity, checksums, and ECCs.!

• But we have no general redundancy mechanisms in place
for even detecting outright computational errors!
• The only possibility is duplication of the computation and comparison!
• But that only works if the computation is deterministic!

• And even if we detect them, we currently have no way of
correcting them except by global restoration of a global
checkpoint

24

24 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Reverse computation cannot reliably
restore a previous state in the
presence of a fault

• What is supposed to happen!

<S1> → E+() → <S2> → E-() → <S1>!

• What happens if there is a fault in forward computation!

<S1> → E+() → <S2> → E-() → <S1>!

• What happens if there is a fault in reverse computation!

<S1> → E+() → <S2> → E-() → <S1>!

• The story is no better if the fault occurs in the runtime
system or OS

25

Notice that if we want to use rollback to recover from faults, we cannot use reverse computation to accomplish it. With reverse computation, if we start in state S1

and execute E+() correctly then we get to S2, and if we then execute E-() correctly we get back to S1.!!
But if a fault happens during execution of E+(), and we do not get to S2, but instead to faulty state, then executing E-() correctly does not necessarily get us
back to S1 as it is supposed to, but likely to another faulty state.!!
A similar problem arises if the fault occurs not during E+(), but during E-(). Again, starting from correct state S2, we do not get back to correct state S1 as we
are supposed to, but to a faulty state.

25 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Can we use rollback to recover from
faults?
• We would probably not consider it except that we are have a

rollback mechanism in place for synchronization anyway!!

• But with virtual time transient computational faults are
correctable without global restoration of a global checkpoint!

• However!
• We must duplicate the entire computation just to detect computational errors!
• We must use state saving, not reverse computation, for rollback!
• We must check for errors at commit time by comparing states and messages in the

duplicate computations!

• Corrections can be done !
• semi-locally!
• asynchronously!
• in parallel with the rest of the computation!
• no (conservative) barrier required

26

26 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Run entire computations in duplicate
• Obviously requires twice the RAM right off the top, and

twice the cores if there is to be no speed sacrifice.

27

Old
EGVT

New
EGVT

Because this is a deterministic virtual time computation, both of the space-time graphs will look identical. !!
The lower green line is the virtual time at which the last full state saves occurred, so we can roll back to those states without doing reverse computation. The states
and messages crossing that line were validated by comparing them to their twins in the other computation.!!
The upper green line represents the newly calculated EGVT. At this point we are about to commit to this new EGVT and discard all older state and message
information. But first, as part of commitment, we have to make sure it is correct, i.e. that the new states and messages we are going to save and from which we
cannot roll back, have not been damaged by a fault of system bug.!!
(Slight additional complications in the algorithms on these next slides arise if objects are created or destroyed, but we will ignore them.)

27 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Compare final states and messages to the
corresponding ones in the twin computation

28

Old
EGVT

New
EGVT

The blue segments represent the states (vertical) and messages (horizontal) that will be saved after commitment. All else will be discarded. !!
The first step is to compare these states and messages from one computation to those of the other twin computation. If they are all identical, then the commitment
can continue, and all but the blue states and messages can be discarded.

28 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Identify states and messages that disagree
between the “twin” computations

29

Old
EGVT

New
EGVT

However we may find discrepancies in some of the states or messages that we compare. In this case the red lines represent states that disagree with the
corresponding ones in the other duplicated computation. !!
We don’t know at this point which ones are correct and which are wrong — indeed in principle they could all be wrong, though that should be extraordinarily
unlikely. We also don’t know if these discrepancies represent the results of multiple faults, or just the spreading pollution of one original fault. If they are multiple
independent original faults, some of the faults could have occurred in one computation and others could be in the twin. !!
Regardless, the following procedure is unchanged.

29 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

If possible, trace backward in the
computation to find the original faulty event

30

Old
EGVT

New
EGVT

The original faulty event(s) have inputs that agree in the twin computations, but outputs that do not. If the rollback mechanism uses full state saves for every event
or full saved state deltas of some kind (e.g. dirty pages), then we can trace backward in both computations, comparing comparable states and messages between the
two, to discover the original faulty event. The original faulty event would be an event in which all of the inputs to the event (states and messages) agree between the
two computations, but the outputs differ. Having found that event, we know that it either executed wrong in one computation or in the other (or extremely rarely,
both), but we don’t know which. The red arcs are where the corresponding states or messages in the twin computations disagree. The starred event is the one that
had the original failure in one or the other computation (but we don’t know which one).!!
If there is a way to reconstruct this state reliably in both computations (e.g. because we are doing full up front state saving (snapshotting) between every two events)
then we could just restore those states to the object in question in both computations and let them execute forward again from there using lazy cancellation. Both
computations will re-compute the red tree of incorrect or potentially incorrect messages and states, and if the final states and messages they compute at EGVT agree
this time, then the problem has been perfectly corrected. If not, then there is either a bug in the runtime system/OS, or there is a permanent fault (or a second
transient fault — presumably so rare that it is negligible), and we should then abort.

30 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Trace backward all the way to the last validated
saved states, roll back, and recompute forward

31

Old
EGVT

New
EGVT

Trace back from the states and messages that disagree between the two computations at the time of the New EGVT back to the last validated snapshot to identify all
states and messages that have causal paths to the known good states and messages at Old EGVT. In this diagram all of the orange and red events, states, and
messages are suspect, and the fault is somewhere included among them. That is the portion of the computation that has to be re-done. Even if the fault was in the
OS or runtime system, as long as it was transient, redoing the red computation will correct it. (But it will not necessarily correct the effects of bugs in the OS or
runtime system.)!!
To correct the faults we roll back all of the objects in both computations that lead to suspect events. In this case it is the leftmost 8 objects in both computations that
must roll back. When we roll back the 8 leftmost objects, we proceed to re-execute forward using lazy cancellation. That prevents us from resending messages that
are the same as were generated the last time the event was executed before the rollback, and from re-doing more of the computation than is necessary to assure that
the fault is corrected.!!
However, since we are not doing full state saves after every event, we have to trace backward from the bad outputs of the computation all the way back to the
known good inputs. Any message, state, or event on a path from the known good inputs to one of the bad outputs is suspicious. In this diagram that includes both
the red and orange arcs and nodes.!

31 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Don’t use aggressive cancellation in the
rollback

32

Old
EGVT

New
EGVT

We must roll back all processes that are suspicious to a known good state, and start re-executing forward. As we re-execute forward we can use aggressive
cancellation, lazy cancellation, or some other variation. Aggressive cancellation, however, is a poor choice because it leads to cancellation of many more messages
than necessary, and hence much more re-computation than necessary. In this diagram the brown arcs and computation are not suspicious, but aggressive
cancellation would cancel all of those messages anyway, and then the forward execution would regenerate and re-send them all. It would work, but is inefficient.!

32 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Use Lazy cancellation instead!

33

Old
EGVT

New
EGVT

When we roll back the leftmost 8 objects (the suspicious ones) to the known good states and message queues and then re-execute forward with lazy cancellation, we
end up canceling and re-executing a lot less computation than with aggressive cancellation. In this diagram the red and green arcs are those that have to be re-
generated and re-transmitted. The red arcs were actually incorrect in at least one of the twin computations and of course they end up being recalculated. The
vertical green arcs represent events and states that get re-executed just because we don't know that they are correct until we re-execute them all the way forward to
final states at time New EGVT. But with lazy cancellation the events on the green paths recalculate the messages sent from those events, and because the outgoing
messages from those events were correct the first time and are then regenerated the same as the first time the event was executed, there is no need to cancel them or
resend them those messages -- that is the way lazy cancellation works. Thus, there are no green message arcs in this diagram, just green state arcs. With a little more
logic, some of the green states would not have to be re-calculated either, because once we recalculate and event all of whose outgoing messages are already correct,
if that happens in an object whose final state is known correct, then all of the intermediate states can be presumed to be so also.

33 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Dynamic Configuration
Management

34

34 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Dynamic Configuration Management
— DCM

• Dynamic load balancing —> dynamic configuration
management!
• includes dynamic processor (core) load balancing, balancing

communication channel loads, and reducing communication latencies !
• The general view is to dynamically reconfigure the computation so that

progress on the critical path is fastest!

• In an SPMD application the natural technique for managing
load is moving element / region boundaries, and splitting of
joining of elements, and migrating data.!

• But in an MPMD application like PDES, that does not work

35

35 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

DCM by object migration

• MPMD applications must be dynamically managed by migrating
processes / objects from one platform node to another!

• Overdecompose the application into small, concurrent, migratable
units!

• Instrument to estimate what parts of the computation and
communication are on the critical path!

• Migrate objects in such a way to speed execution of the critical path!

• Adjust message routing maps dynamically so that messages in transit
and subsequent messages are correctly routed to the new location of
the migrated object

36

36 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Ideal method of DCM
• Imagine an oracle that can instantly compute metrics for the future of

the computation, with all arcs and nodes labels with real execution
and message transmission times!

• Have the oracle calculate the lengths of all future paths from the
current states of all objects to the end of the computation.!

• Schedule all event execution so that if there are n cores available,
then always the lowest virtual time events on the n longest (critical)
paths are being executed.!
• every microsecond that we are not making progress on the critical path(s) is a microsecond of

delay in the final completion time.!

• Propose object migrations that make longest near-term critical paths
shorter:!
• If computation is the bottleneck make sure that long paths do not compete for cores!
• If some processors are faster than others, migrate critical objects to the faster ones!
• If communication bandwidth is the bottleneck, make sure that long paths do not compete for

communication links!
• If communication latency is the bottleneck, make sure that objects that communicate

bidirectionally on the critical path are close to one another, preferably on the same node.

37

37 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Two levels of DCM
• Application-independent!

• Generic heuristic methods that apply to all applications!
• Transparent to the application, implemented in the runtime system!
• Portable to all platforms, implemented with similar code but different

performance parameters!
• Modifications to application code, or federation with other codes require

no change!
• Analogy: Page retrieval and replacement algorithms for memory

management!

• Application-specific!
• Methods specific to a particular application or code!
• Application provides parameters, commands, or advice to the runtime

system!
• Modifications to application code, or federation with other codes will

generally require changes in DCM!
• May get better performance than application-independent methods, but at

the cost of application complexity and portability
38

Application-independent methods of DCM make one fundamental assumption: that the recent past dynamic behavior of an application is best predictor of the near
future behavior. When that assumption is not true, as when the computation goes through frequent phase changes, then it is necessary to fall back on application-
specific methods if they are available. !!
The general question for which we need new research is: To what extent can we make do with application-independent methods alone, so that they can be packaged
in the runtime system and application programmers don’t have to think about DCM? Demand paging has been an extraordinarily successful method of managing
virtual memory, to the point tat there are very few circumstance in which an application programmer bothers to think about virtual memory management. The
classic cases when it is necessary are when deciding how to walk the elements of a two dimensional array, and when writing memory management libraries (e.g. for
malloc() and free()). Can we design application independent DCM algorithms that are as successful as demand paging algorithms?

38 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Virtual Time is useful for Application
Independent DCM

• Dynamic load balancing has traditionally been driven by
estimates of the “load” on the system processors and attempting
to dynamically “balance” it.!

• But that is not theoretically the correct approach, even for
compute-bound executions, except in special cases!

• DCM should ideally be driven by estimates of the future critical
path. !
• Computation and communication on the future critical path should get

more resources or lower latency!
• … at the expense of those off the critical path!

• Current measure of processor or core loads tells you nothing
about the future critical path!

• Virtual time does!

39

39 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Virtual time is an estimator of
where the critical paths are

• At any given moment, virtual time is an estimator of what
is on the critical path!
• lowest virtual times represents bottleneck objects — likely to be

executing on the critical path!

• high (or ∞) virtual times are not a bottleneck, and likely to be doing
speculative computation — unlikely to be advancing a critical path!

• Rank order in virtual time indicates where more
resources are needed, and where they should be taken
from!

• “Velocity” in virtual time as another useful statistic!
• Ratio of committed progress in virtual time Δv to committed progress in

real time Δt!
!! ! ! ! ! ! Δv/Δt

40

40 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014 41

GVT

Objects near GVT hold back progress
and need more resources

Over-	

loaded

Over-	

loaded

Under-	

loaded

Under-	

loaded

Under-	

loaded

The red vertical bars represent how far in virtual time the objects in the simulation have progressed as of the time a new value of GVT has been calculated. Notice
that GVT is defined by the lowest virtual time to which any object has progressed, whereas most of the objects are ahead of GVT, and some far ahead. (This
description is not strictly true, of course, since messages in transit can also determine GVT and we are not considering that here. Also not considered is that not all
of the objects in a computation will be polled for the contribution to GVT or informed of the new GVT value at exactly the same time, and so this diagram, which
purports to be an instantaneous snapshot of the progress of all of the objects, really cannot be. But I am ignoring those points.)!!
The background regions above the groups of bars (representing groups of four objects each located in the same platform node) are colored pink, yellow or green
according to whether the farthest behind object on that node is far behind in virtual time, among the midrange, or far ahead in virtual time. Those platform nodes
that are far ahead (green) can be considered to be underloaded in comparison with the others. Those that are far back (pink) can be considered to be overloaded.
This suggests that a reasonable strategy for ordinary load balancing would be to migrate load from pink to green nodes.

41 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Objects sorted in rank order
of virtual time

42

GVT

Overloaded Underloaded

During GVT calculation, calculate (or estimate) the
virtual time rank of every object in the computation. Use
that in a ranking for load balancing purposes.

In this slide we have taken the data (red bars) from the previous slide and arrayed it in sorted order !!
In order to apply the strategy outlined on the previous slide, it is necessary for each node to be informed, at the time a new EGVT value is promulgated, of its rank
in virtual time compared to all other nodes. That way a node knows whether it is overloaded or underloaded with respect to other node. The nodes armed with
that information may collectively apply algorithms and heuristics to decide which objects are to be migrated where. This rank information does not fully determine
the load balancing algorithm, but it definitely helps inform it.

42 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Energy management as a potential tool
for “load balancing"

• Assumptions!
• We want to power as little of the hardware circuitry as possible at all

times!
• The runtime system can reduce or increase power usage on a node-by-

node basis by reducing or increasing the clock frequencies on the entire
node!

• Changes in node-level power allocation are low-overhead!

• Approach!
• Send maximum power to nodes that are behind in virtual time, causing

them to execute at max speed!
• Reduce power to nodes that are ahead in virtual time, causing them to

slow down (relatively)!
• Energy management for short term adjustments!
• Migration for longer-term adjustments

43

43 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Migration to reduce latency on
critical path? How?

44

Migration
unnecessary

Migration may be
helpful

Migration may be
helpful, but hard to
detect

DCM also should be interpreted is including the migration of objects for purposes of getting those the communicate frequently to be located near one another in the architecture of the
machine so as to reduce latency, and if possible to get the located on the same node so that communication can be through shared memory.!!
However, knowing when migration to reduce is appropriate or not is very tricky. First, of course, it is only worth reducing communication latency if that communication is on a critical path of
the future computation. But even if that is perfectly known, it is still not obvious how to instrument to determine when to migrate and when not.!!
For example, in the leftmost diagram the communication pattern is that one object is sending frequent messages to the other. But there is no return traffic — the communication is entirely
one way. This is a case in which the two objects are essentially stages in a pipeline, and there is very little to be gained in migrating them closer together. If a million messages were sent,
and they were moved closer together so that the communication latency were, say 1 usec instead of 10 used (a latency reduction of 90%) the execution time for the entire computation
would only be shortened by 9 usec, not 9 million usec.!!
On the other hand, in the middle diagram where there is traffic in both directions it is possible for every message latency to be on the critical path of the entire computation. In that case
reducing latency from 10 used to 1 used would save 9 used for each message in the critical path. If there are a million messages exchanged, and all are on the critical path (because the
application is communication bound) then that saves 9 million usec in of total runtime end to end.!!
In the third diagram messages are circulating among three objects. This is like the middle case in that if all of the messages are on the critical path, then it will definitely pay to migrate the
three of them closer together, or even just two of them. The problem is that it is not clear how to instrument in order to detect this pattern, since no one node or pair of nodes has enough
information to recognize it.

44 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

New Research Needed in DCM
• Better estimates of critical path in compute-bound

computations!

• Estimates of critical path in latency-bound computations!

• Even having a good estimate of the critical path, how do
we suggest particular migrations?!
• What objects should be moved from where to where?!

• How do we consider the costs of DCM in a cost-benefit
analysis?!
• The cost of the instrumentation, and the migration decisions!
• The cost of migration itself!

• Unified theory of DCM!

• Unification of DCM with energy management

45

45 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Space-Time Symmetry

46

46 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Symmetries in Time Warp

• Attention to symmetry allows for !
• simple explanations!
• clean APIs!
• clean implementations!
• deeper understanding!
• unexpected variations and generalizations!

• The semantics of optimistic methods have been
carefully designed to exhibit many symmetries!
• input message / output message symmetry!
• forward / reverse message transmission!
• event message / state symmetry!
• message / antimessage symmetry!
• forward / backward in time symmetry

47

The Time Warp optimistic method for implementing virtual time was deliberately designed with numerous symmetries in mind. Whenever there was a “near
symmetry”, we asked “what happens if you make the symmetry perfect, and in every case the system was improved and new insight gained.

47 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Extended analogy between virtual memory
(demand paging) and virtual time (time warp)

48

virtual memory virtual time
virtual address virtual time

page event

page out of memory event in the past

page in memory event in the present or future

page fault (caused by addressing a
page out of memory)

rollback (“time fault” caused by
addressing an event in the past)

pure demand paging (retrieve
page only when page out of
memory is referenced)

pure demand rollback (roll back only
when a virtual time in the past is
referenced)

thrashing: too many page faults thrashing: too many rollbacks

cure: allocate more real memory
to hold pages

cure: allocate more real time for
events (i.e. slow down!)

The term “virtual time” was chosen partly because the term “simulation time” suggested that it was only for simulations, whereas we intended wider applicability,
and partly because of this extended analogy to virtual memory, which we consciously used to clarify the ideas of virtual time.!

48 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Examples of unexpected innovations
inspired by symmetry

• Message sendback — symmetric to process rollback!

• “Jump forward” rollback optimization — symmetric to
lazy cancellation!

• Antistates and anti-objects — inspired by antimessages

49

There were several unexpected innovations in the Time Warp algorithm that were directly inspired by symmetry considerations.!!
Message sendback, used for flow control and memory management in general, was directly inspired by object rollback. By asking the question “Why can we roll
back computation but not communication?” the answer turned out to be “We can!”, and it was a very important discovery.!!
Lazy cancellation as discovered early. But it was a long time before the symmetry between states and messages became clear enough that we could ask the question
“Is there a state analog to lazy cancellation for messages?”. The answer turned out to be yes, and it was dubbed the “jump forward optimization”. We have not
talked about that in this course, but it is present in the literature.!!
Anti-states and anti-objects were directly inspired by antimessages and the question “Because of the strong symmetry between states and messages, since there are
two kinds of messages, + and -, why aren’t there also two kinds of states?”. The answer was that of course you could define that, and when you do out pops the
notion of anti-objects. If you run two objects, P and anti-P in the same computation, the results is that anti-P exactly cancels all of the side effects if P, and it does so
asynchronously and concurrently.

49 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Object / anti-object Symmetry Group
• Define NOOP:!

• Object with empty state that does nothing when it receives an event message!

• Let || be a binary operation on objects that means to execute
them at the same virtual location.!

• Two objects at the same virtual location both receive and process the same incoming messages
using their respective separate states.!

• If P is an object, define -P as its anti-object. !
• -P is in the same virtual location as P and starts in the state that is the antistate of the one P

starts in (i.e. same state but the opposite “sign”). !

• Whenever P sends an event message M, -P computes and sends the antimessage -M!
• When P saves a state S, -P saves the antistate -S, and erases it!

• Then || over the space of all objects forms an Abelian group
operation, with NOOP as its identity!

P || (Q || R) == (P || Q) || R associativity!
P || Q == Q || P commutativity !
P || NOOP == NOOP || P = P identity!
P || -P == NOOP inverse

50

In this slide P, Q, and R are objects. P ||Q means to execute P and Q in parallel and at the same virtual location! What does it mean to execute two objects at the same virtual location? It means that whenever any event
message is sent to P is also sent to Q at the same time. Put another way, at the point in virtual space-time where the event occurs, there are two states (one from each object) and one event message. If that sound bizarre, just
remember that we have already had to deal in the early part of this course with the fact that we sometimes have two event messages arriving at the same time at the same location. We have called this tie, and we needed
a tie-breaking rule to determine what to do in that case. But since messages and states are supposed to be symmetric to one another (and we want them to be) then we need to be able to consider and handle the events in
which there are two states and one event message (and more generally, m states and n messages). That is what we are doing here. And what we mean by executing an event with two states and one event message (our
state-tie-breaking rule) is that both objects separately process the event message in the context of their separate states, each making its own state changes and each sending out new event messages as calculated. But,
since they both are at the same virtual location, they both send event messages with the same sender and send time. Note that the “sender” is not really the “name” of the object, since “P” and “Q” have different
“names”; rather the sender of a message is more properly the “virtual location” of the sending object, and side P and Q have the same virtual location, the messages they send have the same sender field. (This is
important because when P and -P are at the same virtual location, we want the messages they send to be true anti messages of one another, which they would not be if they had different senders.)!!
We define an antistate to be the same thing as a (positive) state except that when it processes a (positive) event message, any event messages it sends as a result are negative, not positive, and the copies of outgoing
messages that it saves in its output queue are positive, not negative.!!
The antiobject of object P, denoted as -P, is identical to P in that it has the same event methods and the same initial state, except its initial (and all subsequent states) are negative instead of (the normal) positive states.!!
These definitions lead to the consideration that the space of all objects and anti-objects forms an Abelian group with respect to parallel composition at the same virtual location. (Strictly speaking the elements of the group are
not the objects, but object equivalence classes — two distinct objects that generate the same sequences of states and event messages when driven by the same sequence of incoming event messages are equivalent.)!!
(This exposition can be continued to consider state - antistate annihilation, symmetric to message-antimessage annihilation, but the margin of this slide is to small to develop this subject.)!!
What is the point of objects and anti-objects. Well I am not sure what the practical application of this would be, but I think it is pretty neat that in the virtual space-time formalism you can actually exactly nullify all of the
side effects, direct and indirect, of literally any object, just by launching its anti-object at the same virtual location. And the nullification takes place totally asynchronously!!

50 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Anti-objects

• Objects P and -P (anti-P)
start in states S and -S
(anti-S)!

• P and -P receive exactly
the same inputs!

• However, -P sends
antimessages to the same
places P sends positive
messages!

• All of P’s side effects on
other objects are exactly
canceled, as if P did not
exist.

51

Virtual	

Time

Consider this set of objects interacting as shown. Virtual time goes upward.

51 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Anti-objects

• Objects P and -P (anti-P)
start in states S and -S
(anti-S)!

• P and -P receive exactly
the same inputs!

• However, -P sends
antimessages to the same
places P sends positive
messages!

• All of P’s side effects on
other objects are exactly
canceled, as if P did not
exist.

52

Same object interaction diagram — just stretched out in one place.

52 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Anti-objects

• Objects P and -P (anti-P)
start in states S and -S
(anti-S)!

• P and -P receive exactly
the same inputs!

• However, -P sends
antimessages to the same
places P sends positive
messages!

• All of P’s side effects on
other objects are exactly
canceled, as if P did not
exist.

53
P -P

Call the 4th object P. We have added -P in red next to it. -P gets all the same input messages as P, but instead of sending positive event messages it sends negative
ones.

53 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Anti-objects

• Objects P and -P (anti-P)
start in states S and -S
(anti-S)!

• P and -P receive exactly
the same inputs!

• However, -P sends
antimessages to the same
places P sends positive
messages!

• All of P’s side effects on
other objects are exactly
canceled, as if P did not
exist.

54
P -P

In this diagram we have removed all of the messages output by both P and -P because of course they cancel one another and thus have a net null effect. We are still
showing the messages inout to P and -P because nothing prevents other processes from sending messages to them. We should note, however, that P and -P will not
get the same messages as P would alone, of course, because some of the messages sent to P (and duplicated to -P) are affected by or prompted by the messages
output from P (when not cancelled by -P).

54 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Anti-objects

• Objects P and -P (anti-P)
start in states S and -S
(anti-S)!

• P and -P receive exactly
the same inputs!

• However, -P sends
antimessages to the same
places P sends positive
messages!

• All of P’s side effects on
other objects are exactly
canceled, as if P did not
exist.

55

Despite all of the messages sent to P and -P, they produce no output event messages that get committed, so they act effectively as a kind of event message sink.
Since they have no effect on the computation, it is as if they are not there at all.

55 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Anti-objects

• Objects P and -P (anti-P)
start in states S and -S
(anti-S)!

• P and -P receive exactly
the same inputs!

• However, -P sends
antimessages to the same
places P sends positive
messages!

• All of P’s side effects on
other objects are exactly
canceled, as if P did not
exist.

56

This is the same slide as the previous one, but with the “gap” closed up.

56 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Virtual SpaceTime

57

57 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Dualities in space and time?

58

Spatial notions Temporal notions

array fixed length time series

SPMD parallelism time-stepped, for-loop

struct sequential composition

allocation / allocator scheduling / scheduler

pointer / address virtual time value

memory location broadcast (instantaneous in virtual time)

atomic action encapsulated data

Among the symmetries considered is virtual space-virtual time symmetry. But that is not a perfect symmetry, since space and time are not generally
interchangeable with one another — there is still a directionality and connection to causality in time that space does not have. Still, there is at least a partial duality
between them, and some spatial programming notions have natural duals in time. This is the beginning of the idea that virtual space-time may be the semantic
foundation of a new parallel programming paradigm.

58 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Simple Virtual SpaceTime computations

59

SPMD computation
Spatial array

Time-stepped computation
Temporal array

Time-stepped SPMD computation
2-D spacetime array

One way to look at parallel computation is as a process unfolding in virtual space-time. We can view an SPMD computation, for example, as an array. It is not an
array of data elements, however, but an array of communicating computations. Thinking of it as an array is appropriate because the elements are indexed by
integers (rank, in MPI), because that the number of elements is generally constant (as with data arrays), and because all of the elements are of the same type (i.e.
share the same code), as with data arrays.!!
If we “rotate” an SPMD computation 90 degrees in virtual space-time, and struggle reinterpret what was broadcast communication is now memory (of the past, but
also of the future) and what was memory is now instantaneous broadcast, then we can see that the space-time dual of an array is a time series; and if the objects in
the time series are computations instead of just date, then a temporal array is a time stepped computation, i.e. a big for-loop (with a parallel body).!!
And a time-stepped SPMD computation can be viewed as a two-dimensional array, one dimension of virtual space and one of virtual time.

59 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

General Virtual SpaceTime computation?

60

Virtual Space
V

ir
tu

al
 T

im
e

Can we imagine a new computational paradigm based on virtual space-time? In this diagram we see a computation composed of many smaller ones composed in
space (horizontal), and composed in time (vertical). Some of the component computations arrays, either temporal or spacial.!!
And some events (points in spacetime) may invoke whole new space-time computations that begin and complete during the course of that one event. The three
small brown space-time diagrams in the upper right represent that. In effect those are subcomputations, making this in effect a multiscale computation.!!
In this illustration, some of the virtual space-time is not filled with any computation. That does not necessarily mean that resources are wasted, however. Just as
using widely separated parts of virtual memory address space without using the address space in between does not result in any wasted resources, the same is true
of virtual time.

60 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Event-driven Methods for	

Continuous Simulation

61

61 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Connection between continuous and
discrete simulation

62

Simulations

Continuous Discrete

Time-stepped Event-driven

Sequential Parallel Sequential Parallel

Conservative Optimistic

discretization ???

Discretization of a continuous model is the transformation from equational form into a discrete model. Virtually always this is a time-stepped model. !!
Grand challenge: Develop techniques for transforming continuous models into discrete event models. No one knows how to do that in general, although there are
hints coming. Would help solve the general problem of multiscale simulation, in time at least.

62 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Event-driven methods for
continuous simulation?

• Can we discretize continuous models into event driven
form instead of time-stepped?!

• Event-driven continuous simulation!
• Should work well when there are very high derivatives and/or chaotic

behavior that “looks like” unexpected discontinuities!
• Could it improve upon AMR?!

• Grand Challenge: Unify continuous and discrete event
simulation!
• DEVS formalism?

63

63 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Time stepped vs. event-driven continuous
simulation

64

Adaptive Mesh	

Refinement

hypothetical	

event-driven algorithm

spacespace

tim
e

repartitioning,	

load balancing

synchronization,	

interpolation

64 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Future Basic Research in Parallel
Discrete Event Simulation and

Scalable Computation	

65

65 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Research Issues

• Performance!
• dynamic configuration management theory!
• low latency migration and message forwarding mechanisms!
• dynamic energy management!
• mixed conservative / optimistic methods!
• hardware support for virtual time and rollback!

• Reverse computation!
• multiple programming languages!
• more sophisticated methods!
• languages designed with reversal in mind

66

66 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Research Issues
• Software engineering technology and tools for model

construction!
• coupling of simulations!

• spatial coupling (one-way and two-way boundary relationships)!
• temporal coupling (one simulation creates initial conditions for (part of)p
other)!

• multiscale systems!
• objects as simulations!
• events as simulations!

• virtual machines in simulations !
• discrete methods for continuous problems!

• discretization of ODEs and PDEs directly into event-driven form!
• mixed discrete and continuous simulation!
• coupling of continuous and discrete event simulations!

• unification of rollback methods for synchronization and for backtracking!

• Virtual Time for Simulation and Big Data!
• file systems!
• databases

67

67 PDES Course Slides Lecture 15.key - May 28, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

End

68

68 PDES Course Slides Lecture 15.key - May 28, 2014

